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The mixing layer over a deep cavity at
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The flow over a cavity at a Mach number 0.8 is considered. The cavity is deep with
an aspect ratio (length over depth) L/D = 0.42. This deep cavity flow exhibits several
features that makes it different from shallower cavities. It is subjected to very regular
self-sustained oscillations with a highly two-dimensional and periodic organization
of the mixing layer over the cavity. This is revealed by means of a high-speed
schlieren technique. Analysis of pressure signals shows that the first tone mode is the
strongest, the others being close to harmonics. This departs from shallower cavity
flows where the tones are usually predicted well by the standard Rossiter’s model.
A two-component laser-Doppler velocimetry system is also used to characterize the
phase-averaged properties of the flow. It is shown that the formation of coherent
vortices in the region close to the boundary layer separation has some resemblance to
the ‘collective interaction mechanism’ introduced by Ho & Huang (1982) to describe
mixing layers subjected to strong sub-harmonic forcing. Otherwise, the conditional
statistics show close similarities with those found in classical forced mixing layers
except for the production of random perturbations, which reaches a maximum in
the structure centres, not in the hyperbolic regions with which turbulence production
is usually associated. An attempt is made to relate this difference to the elliptic
instability that may be observed here thanks to the particularly well-organized nature
of the flow.

1. Introduction
Transonic cavity flows are characterized by discrete tones due to a feedback

mechanism between the growth and convection of instability waves in the shear
layer and acoustic disturbances produced by the shear-layer impingement on the
downstream edge of the cavity, see Rossiter (1964) and Rockwell & Naudascher (1979).
Strong variations of pressure, density and side forces resulting from this flow/acoustic
resonance make open cavity flows a generic problem for aero-acoustics, aero-optics
and aero-elasticity applications. A large number of open cavity flow computations
have been recently undertaken due to the rapid development of unsteady CFD
(see e.g. Colonius 2001). Most of the published experimental data are concerned
with the characterization of the acoustic environment in, and around cavities, e.g.
Krishnamurty (1955), Plumblee, Gibson & Lassiter (1962), Rossiter (1964), Heller &
Bliss (1975), Tam & Block (1978), Ahuja & Mendoza (1995) and others. It is one of
the purposes of the present paper to describe one of the first databases devoted to
the description of the flow field.
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The present cavity geometry is characterized by a low aspect ratio L/D = 0.42
where L denotes the cavity length in the free-stream direction, and D its depth. As
will be seen, this choice leads to a strong two-dimensional organization of the flow,
which makes the present data adequate for two-dimensional unsteady simulations.
A second data set, based on the same techniques, has also been constructed for
a shallower cavity L/D = 2, obtained by reducing D and maintaining all other
parameters unchanged (Forestier, Geffroy & Jacquin 2000). In the latter case, the flow
exhibits strong three-dimensionality. Comparisons with these two databases constitute
a challenge for CFD. Beyond this practical objective, such a refined description of
the flow field may help to improve our inadequate understanding of the cavity flow
physics. The present paper will only focus on the deep cavity, which may be considered
as a limiting case with regard to available data which generally concern shallower
cavities.

Velocity measurements have been obtained with a LDV system. The phase-averaged
technique introduced by Hussain & Reynolds (1970) has been applied to these data.
The technique can separate the ‘coherent’ motion, related to the periodic excitation,
from the random fluctuating part. The velocity, u(x, t), is decomposed into three parts:
u(x, t) = ū(x) + ũ(x, t) + u′(x, t), where ū(x) is the ensemble-average, ũ(x, t) the cyclic
component and u′(x, t) the fluctuating component. The phase-averaged velocity is
defined as 〈u(x, t)〉 = ū(x) + ũ(x, t). The remaining fluctuating component should be
regarded as a residue characterizing events which are not in phase with the reference
signal. In the present case, the phase-averaged velocity has been evaluated by using a
reference pressure signal measured at a fixed point in the cavity. Application of this
classical technique becomes challenging when considering a high-speed flow such as
the present one.

In most cavity flows where self-sustained oscillations are observed, coherent struc-
tures are formed after a rapid roll-up of the separated boundary layer, in phase with
pressure oscillations. These highly coherent eddies usually form at frequencies lower
than the natural shear layer frequency. The same phenomenon is also observed in
other flows such as impinging jets, jet screech and edge tones. In the case of high-speed
jets impinging on a flat plate, Ho & Nosseir (1981) attributed this formation process
of large-scale structures to a ‘collective interaction mechanism’ described by Ho &
Huang (1982). In this regime, the strong sub-harmonic forcing leads to ‘by-passing’ of
the pairing and the vorticity stretching mechanisms which drive the growth of natural
or weakly forced mixing layers (Winant & Browand 1974). The Kelvin–Helmholtz
eddies merge rapidly due to the forcing and this results in the formation of large-scale
structures within small distances. The present experiment seems to confirm that this
mechanism could also hold in cavities, as already suggested by Gharib & Roshko
(1987).

In canonical mixing layers, once coherent structures are formed through successive
pairing of Kelvin–Helmholtz vortices, small-scale fluctuations are usually produced
through continual stretching of three-dimensional vorticity in the saddle regions be-
tween the vortical structures, see Cantwell & Coles (1983) and Hussain & Hayakawa
(1987). This is recognized as the main mechanism responsible for small-scale turbulent
production. In particular, high levels of phase-averaged small-scale turbulence pro-
duction by the Reynolds shear stress are identified in the saddle regions. A different
result is obtained here, where the phase-averaged laser Doppler measurements show
that the Reynolds shear stress is maximum near the vortex centres. This was also ob-
served by Lyn et al. (1995) in the base region of a square cylinder. This indicates that
the relationship between coherent structures and small-scale activity is not universal



The mixing layer over a deep cavity 103

and should depend on the flow conditions. This is discussed in § 4.2 where a close
relation is proposed between small-scale production and the elliptic instability that
develops in the strained two-dimensional vortex structures found in this flow.

The paper is organized as follows. The experimental set-up, measurement techniques
and post-processing are detailed in § 2. The data are presented in § 3. The acoustic
properties of the cavity are discussed in § 3.1 and visualizations of the flow are
presented in § 3.2. The Reynolds-averaged properties of the velocity field are detailed
in § 3.3. Different aspects of the phase averaged results are then considered. The
vorticity field is described in § 3.4 and § 3.5. The energetic properties of the coherent
and random parts of the flow are discussed in § 3.6. Finally, § 3.7 presents an analysis
of the interaction between the flow and the downstream edge of the cavity. Then, in
§ 4 some physical features are further discussed, namely the formation of the coherent
structures, in § 4.1, and the production of random fluctuations, in § 4.2.

2. Apparatus and experimental procedures
2.1. Flow parameters

The experiment was carried out in a continuous wind tunnel equipped with a
constant-section channel of 100 × 120 mm2 area. The tunnel was supplied with dry
atmospheric air and the stagnation conditions were ambient pressure and tempera-
ture (pi ≈ 0.98× 105 Pa and Ti ≈ 293 K). The cavity model sketched in figure 1
was located in the floor of the channel and spanned the whole width of the test
section. The incoming flow Mach number was controlled by means of a motorized
throat and was fixed at M = 0.8. The dimensions of the cavity were L = 50 mm
for the length, D = 120 mm for the depth and W = 120 mm for the width. Aspect
ratios were L/D = 0.42 and D/W = 1. Boundary layer transition was triggered by
a rough band located 200 mm upstream of the cavity. The boundary layer has been
characterized at 70 mm and 1 mm upstream of the cavity. In the latter position, the
incompressible shape factor and the momentum thickness were estimated as Hi = 1.3
and θ0 = 0.65 mm, respectively. The Reynolds number Reθ0

= Ueθ0/ν was 11 145,
where Ue = 258 m s−1 was the free-stream velocity. The Reynolds number based on
the cavity length was about ReL = UeL/ν ≈ 860 000.

2.2. Measurement techniques

Rapid flow visualizations were made using a schlieren apparatus coupled with a
rotating StrobodrumTM type camera. The schlieren set-up used a conventional z-type
mirror system with a horizontal knife edge. The light source was a NanoliteTM spark
light system controlled by a StrobokinTM generator which generates trains of sparks
with controllable frequency and duration. The system was synchronized with the drum
rotation to avoid overlapping of images after one revolution. The mechanical shutter
was controlled manually for a long exposure time. The film used was Kodak Tmax
100 35 mm exposed at IE800. The image frequency was limited by the maximum
drum rotation speed and the capabilities of the spark light (20 000 sparks per s). A
sample of result showing a period of the cavity flow oscillation is given in figure 2.

Velocity measurements were obtained with a two-component laser-Doppler velo-
cimeter in forward scattering mode equipped with an IFA 750 system. A Bragg cell
unit was used to produce a frequency shift of 40 MHz. The radius of the probe
volume was estimated to be ≈ 0.2 mm while the major axis (in the spanwise direction)
was estimated to be 2.5 mm in length. Approach to the walls was generally limited
to 0.2 mm. Oil smoke introduced upstream of the test section cavity was used for the
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Figure 1. Schematic view of the tunnel and the cavity model.

seeding. A typical data rate of 20 kHz was obtained in the shear layer and could be as
small as 2 kHz in the central region of the cavity. The level of free-stream turbulence,√
u′20 /Ue, measured at x/L = −1.4, was 1.5% (where u′0 is the r.m.s. delivered by the

LDV system). This is typical of noise in standard LDV systems. More details about
the LDV set-up are given in Jacquin, Forestier & Geffroy (1998).

2.3. Synchronization

A reference signal delivered by a KuliteTM sensor located 35 mm below the edge of
the upstream wall of the cavity was used to obtain the phase-averaged velocity field.
Figure 3 shows the pressure signal power spectrum. The spectrum is dominated by
the fundamental frequency f1 = 1975 Hz and higher discrete frequencies which are
close to its harmonics. The fundamental is the strongest (≈ 155 dB). The acoustics of
the cavity will be commented on further in § 3.1.

The fundamental frequency, which is close to 2 kHz, may be compared to the
natural, most unstable, frequency of the mixing layers which is found to be close
to f0 ≈ 7 kHz when considering a Strouhal number Stθ = f0θ0/Uc = 0.032 (see Ho
& Huerre 1984) with θ0 = 0.648 mm and where the convection speed is chosen as
Uc ≈ Ue/2 = 129 m s−1. Thus, the flow is equivalent to a mixing layer subjected to a
low-frequency forcing of high intensity.
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Figure 2. High-speed schlieren visualization of one cycle of the mixing layer (20 000 frames per s).
Approximate phase numbers are indicated on the right.

As shown in figure 4, the pressure signal was digitized by a PC equipped with
a National Instrument EISA A2000 acquisition card operating at a maximum rate
of 200 kHz per channel. The signal outputs of the LDV system (photomultipliers)
were processed by the IFA controlled by a second PC using the TSI FIND software.
Synchronization was controlled by resetting both pressure and the LDV system via
an electronic device which received the ADC clock signal from the first PC and
generated two pulses. The first pulse reset the IFA internal clock and the second one
enabled acquisition of the LDV signals by the IFA. The synchronization between the
two clocks was monitored by a second device (Datalink) coupled with the IFA 750.

2.4. Phase averages

In order to eliminate high-frequency fluctuations, the pressure signal was low-pass
filtered at 3 kHz by means of a digital filter. A peak detection method was used to
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Figure 3. Spectrum of the pressure signal delivered by a Kulite transducer located on the
upstream vertical wall at x = 0, y = 0, z = −35 mm.

determine the periods in this signal (other possibilities, such as a detection based
on gradient maximum, were tested and gave similar results, see Forestier 2000). The
construction method of the phase averages is illustrated in figure 5. The instants Ti
coinciding with the maximum of the positive values of the pressure, labelled P1, were
determined and stored in a file, see figure 5(a). The mean period was defined as

T =
1

NT

NT∑
i=1

(Ti+1 − Ti),

where NT was the total number of periods. The working signal U (e.g. a velocity
component), figure 5(b), was then divided into portions delimited by the time refer-
ences Ti which were superposed on a single period of duration T after compression
or dilatation. Variations of the period (Ti+1 − Ti) were found to be very weak, the

r.m.s. being
√

(Ti+1 − Ti − T )2/T ≈ 0.7%. Then, T was divided into Nb = 20 time
intervals or bins, see figure 5(c). The phase average of the signal U corresponds to
an ensemble average of U in the interval [tn − τ/2; tn + τ/2], 1 6 n 6 Nb where the
interval width, τ, can be varied. We use τ = T/Nb, but we have checked that reducing
this value did not modify significantly the statistics once τ was large enough to obtain
enough samples per bin for accurate statistical convergence (see below). From now
on, a phase will denote a given time interval or bin.

The flow fundamental frequency f1 ≈ 2 kHz, whereas the characteristic signal sam-
pling rate delivered by the LDV system was about 20 kHz in the mixing layer and
could decrease down to 2 kHz in the centre of the re-circulation region inside the
cavity, due to a decrease of seeding particle concentration. In the mixing layer, this
gave an average of 10 samples per period. For each measurement, 50 000 samples
were stored. This corresponds typically to NT = 5000 to 8000 periods, depending on
the measurement point. Consequently, each one of the 20 bins contained an average
of 2500 samples with variations between 1000 and 3000. We have reduced the length
of the bins to a constant value, chosen as the minimum value among the 20 bins. This



The mixing layer over a deep cavity 107

Beam
emission

Pressure sensor
L

D

Beam
reception

Displacement system

X-axis

Z-axis

Find

TSI IFA 750
+

DATALINKCounterAD

Pressure acquisition
system

LDV acquisition
system

Figure 4. Schematic diagram of the synchronized acquisition system.

minimum value varied from point to point within the flow, but was never smaller
than 1000 particles so that the total final data contained at least 20 000 particles.

Let N =
∑Nb

n=1 Nn be the total sample size, where Nn denotes the number of samples
in the nth bin. The phase average and the total ensemble average are respectively
defined by

〈u (x, t)〉 = 〈u〉 (x, n) =
1

Nn

Nn∑
i=1

u (x, ti), (1)

〈u〉(x) =
1

Nb

Nb∑
n=1

〈u〉(x, n). (2)

Note that, due to the above-mentioned variations in the number of samples in each
interval, Nn, the ensemble average on the Nb phases 〈u〉(x) would not be equivalent

to the temporal average, ū(x) = (1/N)
∑N

i=1 u(x, ti), used when performing standard
evaluation of Reynolds-averaged statistics. This velocity bias, which is eliminated here
thanks to the conditional analysis, could not have been avoided by other means.

Detailed analyses have shown that a satisfactory convergence of the second-order
statistics is obtained for interval sample lengths of 500–1000 particles (Forestier,
Geffroy & Jacquin 1999). This may be compared with the 1024 samples per interval
used by Cantwell & Coles (1983) for their hot-wire conditional measurements, and
with 300 to 500 samples per interval used by Lyn & Rodi (1994) for LDV conditional
measurements.

The periodic and random components of the signal are defined by

ũ(x, t) = 〈u(x, t)〉 − 〈u〉(x), u′(x, t) = u(x, t)− 〈u(x, t)〉. (3)

The triple decomposition is then u(x, t) = ū(x) + ũ(x, t) + u′(x, t), with ū(x) = 〈u〉(x).
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Figure 5. Phase average of an LDV signal, U, using a pressure signal P1. Nb is the number of time
intervals or bins and T the mean period of the flow cycle.

3. Results
3.1. Cavity acoustics

The modes depicted in the power spectrum of figure 3 may be compared to those
deduced from Rossiter’s equation:

fn =
n− α

L/a+ L/Uc

, (4)

where L is the cavity length, a the sound speed in the cavity, Uc the characteristic
convection velocity of the vortices, n the cavity mode, and α a delay time (α < 1).
The period of mode n = 1 is nearly equal to the sum of the time a perturbation
takes to be convected downstream over the distance L and the time it takes for the
acoustic wave to propagate upstream in the cavity. The factor α accounts for an
additional delay between the impingement of the convected eddies and the resulting
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Figure 6. Strouhal number versus Mach number. Symbols: experimental results, full line:
Rossiter formula (1) with α = 0.25, Uc/Ue = 0.57, broken line: Rossiter formulae (4) with α = 0,
Uc/Ue = 0.50, circled symbols: strongest modes.

acoustic emission. The ratio Uc/Ue is a second empirical parameter. The hypothesis
of a constant convection velocity is a simplification of Rossiter’s model. As shown
in § 3.4, the convection speed depends on the structure and on its position over the
cavity.

Figure 6 shows the variation with the Mach number of the Strouhal number
St = fL/Ue corresponding to the first four peaks observed in the pressure spectra.
Variations of the Mach number from M = 0.5 to M = 0.8 have been considered.
Continuous lines correspond to Rossiter’s formula (4) with α = 0.25 andUc/Ue = 0.57.
These values, prescribed by Rossiter (1964), are found to fit correctly a large body of
published experiments which generally consider narrower cavities, such that L/D > 2.
The circled symbols correspond to the strongest mode. Depending on the Mach
number, this mode switches from mode 1 to mode 2. Mode 1 is the strongest when
M > 0.7. The agreement between the Rossiter model, using the standard set of
parameters, is not satisfactory. The self-sustained oscillations of the present cavity
are closer to harmonics than those observed in shallower cavities. This implies in
particular that a smaller delay parameter α must be used in the Rossiter formulae
(Rossiter 1964 had already suggested that α decreases with L/D). The results obtained
by putting α = 0 are plotted in figure 6. Agreement for the first two modes is obtained
when taking Uc/Ue = 0.50. It turns out that this value corresponds to the averaged
velocity of the structure which impacts the downstream edge of the cavity, as will be
seen in § 3.4.

From the above results, it may be concluded that the resonant frequencies of the
present cavity are not well correlated with the Rossiter model when the standard set
of parameter is used. This could be due to the very low value of the aspect ratio,
L/D, which makes the present flow different from the shallower cavities which are
generally considered.

Also, the possible influence of the tunnel top wall must be also accounted for in
the present case where the tunnel height is only two times the cavity length. Kegerise
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(1999) has shown that in a cavity of aspect ratio L/D = 2, resonance between the
Rossiter and vertical duct modes affects the selection of the dominant frequencies.
We tested this possibility by comparing, as in Kegerise (1999), the cavity Strouhal
numbers shown in figure 6 with those corresponding to the duct modes evaluated
using the formulae

fn =
aen

2(D +H)
, (5)

where H denotes the tunnel height and ae the sound speed in the test section. Here,
H = 100 mm. Contrary to Kegerise (1999), we found no correspondence between the
strongest cavity modes and resonance between the cavity and the duct modes, when
the latter are simply characterized by (5) where effect of the flow in the test section
is neglected. A more detailed analysis of propagation and reflection of acoustic wave
fronts in the duct is conducted in Appendix A where this mechanism is modelled by
the image method. This analysis shows that acoustic fronts travelling upstream may
collapse, after reflection, into a coherent wave pattern which is effectively observed in
the schlieren pictures (see figures 30 and 31). It is also found that the frequency tones
observed in the experiment are close to those corresponding to focusing of reflected
waves at a source point located in the cavity region. The model is not in complete
agreement with the visualizations but it suggests that the wave propagation resulting
from the confinement of the flow by the top wall could contribute, somehow, to
modulation of the cavity tones. In particular, such a mechanism is compatible with the
promotion of harmonics of the fundamental, as observed here. Specific experimental
tests, consisting in changing the geometry of the tunnel and/or using acoustic buffers,
as in Kegerise (1999), would be necessary to scrutinise this problem. But this can be
also tackled by means of numerical simulations. Results obtained by means of a large-
eddy simulation code, which reproduces fairly well the present experiment, indicate
that the mixing layer dynamics described in the following sections is hardly sensitive
to changes in the tunnel height, see Larchevêque et al. (2003). These simulations show
that removing the channel top wall damps harmonics of high orders, leaving the two
first modes, which dominate the spectrum of figure 3, almost unchanged.

A final remark concerns the possibility of a ‘mode switching’ phenomenon which
has been observed by Cattafesta et al. (1998) in a shallower cavity. ‘Mode switching’
corresponds to a cycle-to-cycle variation of the dominant frequency. In Cattafesta et
al. (1998), this phenomenon was found to coincide with a variation, from cycle to
cycle, of the shear layer structure. This did not occur in our flow, as was checked
by applying the same time–frequency analyses as those made by Cattafesta et al.
(1998), namely short-time Fourier transforms and wavelet transforms. This showed
that the hierarchy of the cavity modes does not vary with time. Also, the visualizations
described below confirmed that the properties of the flow were very repetitive from
cycle to cycle. Finally, it should be remarked that a ‘mode switching’ would have
made the conditional sampling method described above ineffective: we would not
have been able to capture a coherent field because all the statistics would have been
smeared out. The conclusion is that the present flow is free from ‘mode switching’.

3.2. Mixing layer visualizations

Figure 2 shows a single cycle of the mixing layer. Flow direction is from left to right.
During this cycle, the shear layer rolls up into three distinct vortical structures. The
inspection of several hundred periods revealed that the sequence shown in figure 2
was highly repetitive. The schlieren process integrates the density gradient along
the flow span. The well-defined structures observed thus reveal the two-dimensional
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nature of the flow. Three structures, labelled S1, S2 and S3, are identified. They evolve
differently. The first one is captured by the cavity when it approaches the downstream
edge. The second impinges on the edge, part penetrating into the cavity, the rest
being swept downstream along the horizontal wall. The third structure is ejected into
the free stream and does not interact with the edge. This behaviour denotes a strong
periodic inflow/outflow process, like that described by Rockwell & Knisely (1979).

An interesting feature of this flow is the presence of a dark bubble on the down-
stream edge which fluctuates during the cycle. This region corresponds to a high-
density-gradient region and can be viewed as an acoustic line source in accordance
with models proposed by Bilanin & Covert (1973), Tam & Block (1978) and Zhang
& Edwards (1990).

As discussed above, the propagation of acoustic fronts is observed in the cavity
and in the external flow region. As explained in Appendix A, these waves correspond
to focusing of the acoustic front reflections on the tunnel top wall. Schlieren pictures
covering a larger area of the flow are shown and commented on in the Appendix, see
figures 30 and 31. Modification of the shear layer dynamics due to impingement by the
reflected wave fronts cannot be excluded. As discussed by Doty & McLaughlin (2000),
interactions among Mach waves, duct modes and Kelvin–Helmholtz instabilities may
occur in compressible mixing layers and may lead to mixing enhancement. However,
the optimal conditions given by Doty & McLaughlin (2000) for such an effect are
not fulfilled in our flow. The formation of the large-scale structures described above
could also be affected by slight boroclinic effects due to interaction of reflected wave
fronts with the upstream boundary layer. This may occur after phase 17 in figure 2,
when such a front reaches the upstream corner of the cavity. This would concern the
formation of structure S3 (see Larchevêque et al. 2003).

3.3. Characteristic regions of the flow

The complete data cover conditional LDV measurements performed in several regions
whose boundaries are shown in figure 7. The results presented in this paper only
consider the two regions where the meshing is visible. One is in the symmetry vertical
plane y = 0 and has a constant mesh size ∆x = ∆z = 2 mm. The other is in the
horizontal plane z = 0, with ∆x = ∆y = 5 mm.

The mean longitudinal velocity component, U, within the vertical measurement
region, is shown in figure 8. The shear layer expansion is characterized in figure 9
through the variation of the incompressible momentum thickness, θ, calculated on
the mesh shown in figure 7(a) by using the following formula:

θ =

∫ zmax

zmin

U

Ue

(
1− U

Ue

)
dz. (6)

Here, zmin and zmax correspond to the vertical location of the lower and upper
mesh boundaries, and Ue denotes the free-stream velocity. The initial momentum
thickness measured 1 mm ahead of the upstream cavity edge, θ0 = 0.648 mm, is
used for normalizing θ. Relation (6) differs from the standard definition used for
free shear layers, i.e. zmin → −∞, zmax → ∞. This can lead to differences if U(x, zmin)
and/or U(x, zmax) have not reached a constant value. However, considering the regular
behaviour of U in figure 8, deviations are expected to be small except near the
downstream end of the domain where interaction with the wall occurs.

In figure 9, three regions may be defined:
(i) In region I, 0 6 x/θ0 6 17, the momentum thickness grows linearly with a

growth rate equal to 0.12. This value is nearly three times larger than that found in
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Figure 7. Measurement meshes: (a) vertical plane y = 0, mesh size ∆x = ∆z = 2 mm in the region
where it is detailed; (b) horizontal plane z = 0, mesh size ∆x = ∆z = 5 mm.

equilibrium free shear layers. A possible interpretation of this high initial spreading
rate in the presence of high-amplitude forcing is the ‘collective interaction mechanism’
described by Ho & Huang (1982). These authors have shown that a high-amplitude
forcing of a mixing layer with a frequency one order of magnitude lower than the
initial instability frequency leads to the rapid merging of vortices into a single eddy
which forms very close to the separation point. As mentioned in the introduction,
the ‘collective interaction’ was also found to participate in the feedback loop of a
high-speed subsonic impinging jet, see Ho & Nosseir (1981). The presence of such
a mechanism could explain the large coherent structures observed in this flow. As
already mentioned by Gharib & Roshko (1987), this could possibly explain the vortex
formation observed in cavity flows. This will be discussed further in § 4.

(ii) In region II, 32 6 x/θ0 6 60, the growth rate decreases to 0.042, a value close
to the growth rate of free turbulent mixing layers. As an example, Browand & Trout
(1985) found dθ/dx = 0.034λ with λ = ∆U/2U and U the mean velocity of the two
flows and ∆U the velocity difference. Neglecting the mean flow recirculation in the
cavity leads to λ ≈ 1. Ho (1986) observed that, after a ‘collective interaction’, the flow
of Ho & Huang (1982) resumes a classical growth rate at values of λx/θ0 ≈ 20, which
may be compared to λx/θ0 ≈ 32 found in our experiment (with λ ≈ 1). Ho & Huang
(1982) observed also a transient damping of the growth rate after the ‘collective
interaction’. A transition region, 17 6 x/θ0 6 32, is also observed in figure 9.

The mean velocity profiles and the streamwise component of the turbulent fluc-
tuations in region II are plotted in figure 10 where the similarity variables η =
(z − z0.5)/θ(x), ξ = (ū− ūmin)/(ūmax − ūmin) and u′0(x)/Ue have been used. Here, z0.5

denotes the vertical position where ξ = 0.5 and u′0 corresponds to the r.m.s. of

the streamwise velocity component, u′0(x) =

√
u2

0(x, t), when considering the classical



The mixing layer over a deep cavity 113

x (mm)

z 
(m

m
)

15

10

5

0

–5

–10

–15
–2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

z 
(m

m
)

15

10

5

0

–5

–10

–15
26 28 30 32 34 36 38 40 42 44 46 48 50 52

U (m s–1)

0 200

Figure 8. Mean velocity profiles: longitudinal velocity component.

10

8

6

4

2

0 10 20 30 40 50 60 70
x/h0

0.50 0.50 0.500.250
x/L

h
h0

Region I Region II Region III

dh
dx

=0.12

dh
dx

=0.042

Figure 9. Momentum thickness of the mixing layer. θ0 is the initial momentum thickness at
x = −1 mm. Dashed lines delimit the three regions defined in § 3.3.



114 N. Forestier, L. Jacquin and P. Geffroy

4

2

0

–2

–4

0 0.1 0.2 0.3

0 0.5 1.0

ê

(z
–

z 0
.5

/h
)

0.76
0.72
0.68
0.64
0.60
0.56
0.52
0.48
0.44
0.76
0.72
0.68
0.64
0.60
0.56
0.52
0.48
0.44
x /L

u′0/Ue

Figure 10. Region II: profiles of the mean value (open symbols) and of the r.m.s. (full symbols) of
the longitudinal velocity component (suffix ‘0’ denotes standard Reynolds decomposition).

Reynolds decomposition u(x, t) = ū(x) + u′0(x, t). From now, suffix ‘0’ will refer to this
type of decomposition.

Figure 10 shows that the flow is not self-preserving within region II: the collapse of
the mean field (open symbols) is not satisfactory and turbulence profiles exhibit strong
variations. In the upper part of the mixing layer, intensity decreases with downstream
distance while it increases in the lower part of the mixing layer. Similar two-peak
turbulent profiles were observed in a forced mixing layer by Ho & Huang (1982) and
Oster & Wygnanski (1982). They were also found in a low-Reynolds-number cavity
flow by Gharib & Roshko (1987). Following these authors, such a double-peak profile
results from the convection of well-defined vortices at a given frequency inside the
measurement domain. Absence of self-similarity in a cavity flow is not surprising.
In a free shear layer, Browand & Trout (1985) found that similarity is reached in
a non-dimensional distance of about λx/θ0 = 400, a value an order of magnitude
higher than that corresponding to the beginning of region II.

(iii) In region III, 60 6 x/θ0 6 77, the momentum thickness decreases as the flow
approaches the downstream edge of the cavity. The extent of region III, which is 17
initial momentum thickness wide, could characterize the influence of the downstream
corner. The final decrease of the momentum thickness is spurious. It results from the
too small values of zmin and zmax when applying relation (6) in this region. Region III is
characterized by an inflow/outflow motion as shown in figure 11(a) where the vertical
velocity profiles W are plotted in dimensionless variables. Close to the downstream
cavity edge, the flow is subjected to a positive (resp. negative) streamwise gradient of
the vertical velocity at positive (resp. negative) vertical positions. This leads to negative
(resp. positive) shear stresses in these region, as shown in figure 11(b). According to
figure 11(c), this may be interpreted by considering a displaced particle argument,
similar to that used to explain why u′0w′0 is negative in a free shear layer. This classical
reasoning is based on the hypothesis that an impulsively displaced fluid particle
conserves its momentum. In a free shear layer where dU/dz > 0, see region I and II
in figure 11(c), the fluctuation of the streamwise velocity component of a fluid particle
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the shear stress u′0w′0, and (c) interpretation of the shear stress sign using a particle displacement
argument.
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displaced with velocity w′0 > 0 is negative, i.e. u′0 = U(z0)−U(z0 + ∆z) < 0. This means

that u′0w′0 < 0. The same is true for a negative vertical displacement: w′0 < 0 gives
u′0 = U(z0) − U(z0 − ∆z) > 0. Considering now the region close to the downstream
vertical wall (apart from its boundary layer), dW/dx(z < 0) < 0, see figure 11(a). A
longitudinal impulsive displacement of positive sign, u′0 > 0, leads to w′0 = W (x0) −
W (x0 + ∆x) > 0, that is u′0w′0 > 0. The same conclusion is reached for u′0 < 0.

3.4. The phase-averaged vorticity

Contours of the phase-averaged spanwise vorticity component, 〈Ωy〉, normalized by
the convection time scale, L/Ue, are shown in figure 12(a–d ). The pictures on the right-
hand side show instantaneous schlieren visualizations (see § 3.2), the flow direction
being from left to right. Solid lines correspond to positive values and coordinates
are normalized by the cavity length. No measurements were possible for x/L < 0.08
and x/L > 0.96 due to optical constraints. The contour plots of the phase-averaged
vorticity look similar to the schlieren pictures. High-vorticity regions correspond to
vortical structures observed in the schlieren visualizations, identified as S1, S2, S3;
very low vorticity levels are found away of the shear layer (see the values given
in the figures). It is important to note that 〈Ωy〉 is deduced from finite-difference
formulae and is, consequently, sensitive to the density of the meshing. The values
presented herein, which are obtained by using a constant mesh size ∆x = ∆z = 2 mm,
underestimate 〈Ωy〉. This has no impact on the present qualitative description.

Variation of the spanwise vorticity peaks is shown in figure 13. The peak values
of structures S1 and S2 grow in the first region. This could be related to a ‘collective
interaction’ mechanism, as discussed in § 3.3. When travelling through the transition
region and through region II, the size of the structures increases and the vorticity peak
values decrease. The latter reach asymptotic constant values in region III. Figure 14
compares the location of these maxima with the position of the vorticity centroids,
which were evaluated, following Lyn et al. (1995), from integration of the vorticity
field by using the following relations:

xc =

∑
〈Ωy〉ij>〈Ωy〉0

x〈Ωy〉ij∆Sij∑
〈Ωy〉ij>〈Ωy〉0

〈Ωy〉ij∆Sij
, zc =

∑
〈Ωy〉ij>〈Ωy〉0

z〈Ωy〉ij∆Sij∑
〈Ωy〉ij>〈Ωy〉0

〈Ωy〉ij∆Sij
. (7)

∆Sij is a surface element on which the vorticity is 〈Ωy〉ij . The cut-off value, 〈Ωy〉0, was
kept constant and equal to +5 whatever the phase considered. As shown in figure 14,
good correspondence is found between the centroids and the peak vorticity locations,
as in Lyn et al. (1995). From figures 12 and 14, it is seen that when structure S1

penetrates the cavity, its contour levels are smeared. Its peak value shown in figure 13
decreases less than that of the two other structures. Structure S2 exhibits a nearly
horizontal path and figure 13 shows that its vorticity, which is initially the highest,
decreases sharply. The third structure, which does not interact with the wall corner,
has a smaller size and weaker vorticity. Its vorticity becomes half that of the first
structure at the end of region II.

Finally, it can be seen on figure 12 that the three structures do not merge (see
also figure 2). This is in agreement with Oster & Wygnanski (1982) who concluded
that the pairing process can be delayed or completely inhibited in a forced turbulent
mixing layer. The last two frames suggest a merger between structures S1 and S2, but
is due to the blockage of S1 by the wall.
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Figure 12. Contour plot of 〈Ωy〉L/Ue: (a) phase 10, (b) phase 15, (c) phase 20, (d ) phase 5.
Corresponding schlieren pictures are shown on the right.

As noticed above (see § 3.2), despite integration of the schlieren technique, the
pictures reveal well-defined two-dimensional structures. This is confirmed by measure-
ments performed in the (x, y)-plane coinciding with the open face of the cavity, see
figure 7(b). Iso-level values of −∂〈W 〉/∂x measured in this plane for phase 17 are
plotted in figure 15(a), figure 15(b) showing the corresponding spanwise vorticity
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〈Ωy〉. The other phases show similar strong evidence that the coherent vortices in
this flow are two-dimensional. Note that in figure 15(a), the top and bottom limits
(y/L = ±1.2) correspond to the side windows of the tunnel where boundary layers
develop. The latter have not been explored, but it is remarkable that their presence
only weakly affects the two-dimensional character of the mixing layer vorticity. The
two-dimensional nature of the flow is weakened at the end of region III where the
mixing layer is subjected to a strong interaction with the downstream cavity edge.
This is illustrated in figure 16 which shows the phase variation of the vertical velocity,
〈W 〉, at three spanwise positions close to the edge. The mass inflow/outflow process
is clearly evidenced by alternation of positive and negative values of the velocity.
Differences in 〈W 〉 occur especially during phases 5 to 12, which correspond to the
ejection of fluid from the cavity. However, even during this interaction process, the
three-dimensional effects remain weak.

The present flow should differ from shallower cavity flows through a stronger two-
dimensional organization, as characterized above. This was confirmed by comparisons
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Figure 15. Phase 17: (a) iso-levels of −∂〈W 〉/∂x in the horizontal plane z = 0, (b) contour plots
of the phase-averaged spanwise vorticity 〈Ωy〉 in the vertical symmetry plane.

with results obtained with a cavity of aspect ratio L/D = 2 (Forestier et al. 2000).
In such a cavity, the flapping of the mixing layer was reduced and the conditional
statistics in the horizontal plane showed clear three-dimensional distortions compared
with figure 15(a). A more efficient coupling between the cavity acoustics and the shear
layer is expected when the aspect ratio L/D is reduced. An explanation could be that
a smaller part of the cavity acoustics is radiated outward when the depth of the cavity
is increased.

3.5. Kinematics

In this section, our conditional results are discussed in the light of those obtained in
other forced and unforced mixing layers. Figure 17 shows the longitudinal position of
the centroids, xc, against the non-dimensional time tUe/L. Convection velocities may
be calculated by differentiation of these data. The results, obtained using a second-
order discretization, are plotted against xc and against time in figures 18(a) and
18(b), respectively. The dashed lines in figure 18(a) correspond to the three regions
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x/L = 0.9, y = −L, 0, L and z = 0, as sketched in (b).

of the flow defined in § 3.3. In region I, which corresponds to the largest spreading
rate (dθ/dx = 0.12), the convection velocities grow linearly from 0 to 0.5Ue. In the
relaxation region, the convection velocities remain almost constant except that of the
ejected structure S3. At the beginning of region II, the values obtained are close to
0.5. In region III, the convection velocities of structures S2 and S3 increase up to
0.75Ue whereas structure S1 decelerates while it is trapped into the cavity.

The mean convection velocity of S2, the structure which interacts directly with the
downstream corner, see figure 2, is found to be Uc2/Ue ≈ 0.5 (here Uc2 denotes the
average over a period of the velocity of this structure). This particular value has been
used in the definition of a modified set of Rossiter’s parameters used in § 3.1, see
figure 6. It is similar to that found by Hussain & Zaman (1985) in the self-preserving
region of a turbulent plane mixing layer, where a standard spreading rate dθ/dx =
0.035 was observed. It is striking that a similar convection speed and spreading rate
are obtained in the present flow (region II), which is strongly out of equilibrium.
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(see figure 18b) showing the centres C1, C2 of structures S1, S2 and the saddle point SP.

As proposed by Cantwell & Coles (1983), the kinematics of coherent structures
may be described in terms of the formation and evolution of saddle points between
vortices. Saddle points must be defined in a reference frame moving at the same
speed as the coherent structures. Figure 18(b) shows that each coherent structure
possesses its own convection velocity. As seen on this figure, the convection velocities
of structures S1 and S2 become identical at the particular time tUe/L = 1.4. This
corresponds to phase 17, which has already been characterized through its vorticity
field in figure 15(b). The pseudo-streamlines in a frame moving at this convection
velocity are sketched in figure 19 (these streamlines have been obtained using the
TecplotTM streamline routine without any further post-processing). We have indicated
the points C1 and C2 which correspond to the position of the centres of structures S1

and S2 and the point SP which corresponds to the saddle point. The spiral shape of
the streamlines of structure S1 may denote three-dimensional effects. This figure will
be used below to discuss phase-averaged results.

3.6. Energetics

A thorough characterization of the phase-averaged statistics has been made and is
available for CFD validation purposes.

As explained in § 2.4, the velocity fluctuations may be split into coherent and
random contributions (u′0 = ũ+ u′). The following kinetic energies are considered
first:

k0 = (u′20 + w′20 )/2, k̃ = (ũ2 + w̃2)/2, k̄ = (〈u′2〉+ 〈w′2〉)/2.
The first expression is based on the standard Reynolds average. The others two
correspond to ensemble averages over the 20 phases. (The standard Reynolds average

is given by k0 = k̃ + k̄.)

Figure 20 shows profiles of k0/U
2
e , k̃/U

2
e , k̄/U

2
e . The periodic component, k̃/U2

e ,
is dominant up to a distance of x/L = 0.8 where it becomes comparable to the
random component, k̄. The peak values of the coherent component amount to nearly
60–70% of the maximum total energy. A shift of these peaks in the lower part of
the mixing layer can be observed when approaching the downstream wall. Profiles of
the corresponding shear stresses are shown in figure 21. Apart from in region III, the
shear stress is dominated by the periodic motion. The peak values are found to be
ũw̃/u′0w′0 ≈ 0.6–0.7.
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Figure 20. Profiles of mean total kinetic energy, k0/U
2
e (- - -4- - -), periodic kinetic energy, k̃/U2
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(�), and random kinetic energy, 〈k〉/U2
e (©), at y = 0 and (a) x/L = 0.2, (b) 0.4, (c) 0.6, (d ) 0.8.

Figure 22 shows the spatial distribution of the phase-averaged stresses, ũ2, w̃2 and
−ũw̃ of the cyclic motion of phase 17 (see figures 15 and 19). The contour shapes are
in agreement with the topology of the flow shown in figure 19. In particular, the shear
stress −ũw̃ associated with structure S1 exhibits a clear quadripolar or ‘cloverleaf’
distribution typical of a monopolar vortex. Contour levels of the phase-averaged shear
stress of the random fluctuations, 〈u′iu′j〉, are shown in figure 23. These quantities are
weaker than their coherent counterpart (compare with figure 22), in accordance with
the results of figure 21. However, it must be noted that 〈u′iu′j〉 may be larger than
the corresponding standard Reynolds stresses. In the present case, the peak value of

〈u′2〉/U2
e of phase 17 exceeds u′20 /U2

e by as much as 30%.
Now, as mentioned in the introduction, the distribution of 〈u′iu′j〉 in the flow field

is an important problem to be discussed since it gives insights into the small-scale
production mechanisms related to coherent structures. Compared with figure 19,
figure 23(a, b) shows that the maxima of 〈u′2〉/U2

e and 〈w′2〉/U2
e coincide with the

vortex centres C1 and C2. This is also found in the whole body of experimental results
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symbols see above).

on mixing layers and is a common feature of these flows. Differences appear when
considering the shear stress −〈u′w′〉. The present results, see figure 23(c), indicate
that −〈u′w′〉/U2

e is maximum in the centres, where it is 3 to 4 times larger than
in the saddle region. Similar observations have been made by Lyn et al. (1995) in
the base region of their square cylinder. But this departs from mixing layer results
where −〈u′w′〉 is found to reach its maximum in the saddle regions. In figure 24, the
iso-values of −〈u′w′〉 are plotted together with those of 〈Ωy〉, of the squared phase-
averaged two-dimensional rate of strain 〈S〉2 = 〈d〉: t〈d〉 (with d = (∇u+ t∇u)/2) and
of the phase-averaged second invariant 〈Q〉 of 〈∇u〉 (Jeong & Hussain 1995). These
results are very similar to those obtained in mixing layers, see e.g. Hussain (1986),
except for the shear stress.

Coupling between small-scale turbulence and coherent strain fields may also be
characterized from the phase-averaged production terms of the random kinetic energy
〈k〉. These terms comprise the contributions of the normal and shear stresses, which
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Figure 22. Phase 17: contour plots of (a) ũ2/U2
e (levels from 0.005 to 0.077 in increments of 0.006),
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are labelled 〈Pn〉 and 〈Ps〉 respectively (see Lyn et al. 1995):

〈Pn〉 = −〈u′2〉∂〈U〉
∂x
− 〈w′2〉∂〈W 〉

∂z
,

〈Ps〉 = −〈u′w′〉
(
∂〈U〉
∂z

+
∂〈W 〉
∂x

)
.

 (8)

Contours of 〈Pn〉L/U3
e , 〈Ps〉L/U3

e and 〈P 〉L/U3
e , with 〈P 〉 = 〈Pn〉 + 〈Ps〉 are shown

for phase 17 in figures 25(a–c). 〈P 〉L/U3
e is essentially positive and is maximum in

the centres of the vortices. It is observed that most of the contribution to 〈P 〉 comes
from 〈Ps〉.

A consensual picture established from mixing layer studies is that small-scale
perturbations are mainly produced by the vortex stretching which takes place in the
saddle regions between two adjacent spanwise structures. Shear stress −〈u′w′〉 and
associated production are then expected to be maximum here. On the other hand,
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the presence of energetic perturbations in the coherent structures is attributed to a
meandering of the vortices and possibly to transport of turbulence from the saddle
regions. Our results conflict this scenario. This difference may possibly be related
to the particularly strong two-dimensional character of the flow, which could enable
the observation of mechanisms here which are usually hidden by a rapid onset of
three-dimensionality in typical free mixing layers. This problem will be discussed
further in § 4.2.

3.7. Vortex/edge interaction

An effort has been made to further describe the region where the vortices interact
with the cavity wall. A KuliteTM sensor was placed below the downstream edge of
the cavity, at x = 50 mm, y = 0, z = −1 mm. We have explored the phase relation
between this signal and that delivered by the central sensor located on the upstream
vertical wall (x = 0, y = 0, z = −35 mm). The two pressure signals, low-pass filtered
at 3 kHz by means of a digital filter, are shown in figure 26 for a typical run. They
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Figure 24. Phase 17: contour plots of (a) the phase-averaged vorticity 〈Ωy〉L/Ue, (b) the shear
stress 〈u′w′〉/U2

e , (c) the strain rate 〈S〉2L2/U2
e , and (d ) the second invariant of 〈∇u〉, 〈Q〉L2/U2

e . The
centres C1 and C2 of the structures S1 and S2 are indicated.

are labelled P1 and P2. The peak-to-peak amplitude of P2 is almost twice that of P1.
Note that P2 is subjected to larger modulations than P1. This denotes a loss of flow
coherence in this region due to the violent breaking of the shear layer. Consequently,
‘jitter’ affects the conditional results in this region (see Appendix B for a detailed
discussion about jitter).

A detailed study of this region would have necessitated a more local eduction
scheme than that based on P1. However, the conditional analysis of P2 using P1 as
a phase reference gives interesting insight into some features of the flow/acoustic
interaction. Distribution of the phase-averaged downstream pressure 〈P2〉 and cor-
responding iso-levels of 〈Ωy〉 are shown in figure 27(b) at different phases of the
vortex/corner interaction. The region covered by the figures corresponds to the end
of region II and region III as defined in § 3.3. A positive peak pressure, correspond-
ing to phase 2, occurs when the first structure S1 dives down the vertical wall (see
figure 12): external high-speed fluid is convected downward and contributes to a
rise of the total pressure. The phase-averaged transverse velocity component 〈W 〉
at z = 0 shows that this phase of the flow cycle corresponds to strongly negative
values of 〈W 〉 at the back of the structure. As the following structure, S2, im-
pinges on the downstream edge of the cavity, see phase 6, a negative peak occurs
which approximately coincides with the impingement of S2 on the edge. This sharp
pressure minimum is related to the total pressure loss in the viscous core of the
vortex. When the structure S3 is swept above the cavity edge, see phase 11, 〈P2〉
in figure 27(a) exhibits an inflection point. From detailed inspection of the flow
visualizations, we have observed that this event coincides with the emission of a wave
front. Then, 〈P2〉 remains approximately constant before a new structure S1 reaches
the downstream cavity wall (see phase 16). Similar behaviour has been observed
in a vortex/edge interaction at low Reynolds number, see e.g. Tang & Rockwell
(1983).
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Figure 25. Production of random fluctuations for phase 17: (a) 〈Pn〉L/U3
e (levels: −0.05 to 0.07 in

increments of 0.02), (b) 〈Ps〉L/U3
e (levels: 0.02 to 0.2 in increments of 0.02), (c) 〈P 〉L/U3

e (levels:
−0.01 to 0.21 in increments of 0.02). See text for the definitions.
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Figure 26. Low-pass filtered pressure signal delivered by transducers located in (a) the upstream
wall, x = 0, y = 0, z = −35 mm, (b) the downstream wall, x = 50 mm, y = 0, z = −1 mm (same
scales).



The mixing layer over a deep cavity 129

0.3

0.2

0.1

0

–0.1

–0.2

Phase 2(a)

P2(t)

z
L

Phase 6(b)

P2(t)

0.3

0.2

0.1

0

–0.1

–0.2

Phase 11(c)

P2(t)

z
L

Phase 16(d)

P2(t)

1.21.11.00.90.80.70.60.5

x /L

1.21.11.00.90.80.70.60.5

x /L

(b)

(a)

©P2ª
t

(b) (c)

(a)

(d)

Figure 27. (a) Phase-averaged downstream edge pressure 〈P2〉 and (b) contour plots of the
phase-averaged vorticity 〈Ωy〉L/Ue for phase 2, 6, 11 and 16 (a–d ).

4. Discussion
Two interesting features described in § 3 are the coherent structure formation

process and small-scale production in the core regions. These two mechanisms are
further discussed in this section.

4.1. Formation of the coherent structures

Refined measurements have been performed in region I in order to check the hy-
pothesis of a ‘collective interaction mechanism’, see § 3.3. The longitudinal extent of
the measurement region was 1 mm 6 x 6 7 mm, which corresponds to nearly half
region I: x/θ0 6 10 (x/L 6 0.12). Its vertical extent was −2.5 mm 6 z 6 0, that is
−4 6 z/θ0 6 0. The mesh size was set as small as ∆x = ∆z = 0.25 mm, which is
nearly the characteristic size of the LDV measurement volume.

A typical result of the conditional analysis of these refined data is given in figure 28
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Figure 28. Phase 9: refined measurements in region I of phase-averaged random kinetic energy 〈k〉.

which shows contours of 〈k〉 at phase 9. It is remarkable to note how thin the vorticity
layer is in this region. Its thickness is of the order of θ0. However, the contour plots do
not reveal any clear tendency to spatial organization. In fact, the results of figure 28
only show that the initial flow organization, if any, does not lock onto the fundamental
frequency of the cavity. Note that Ho & Nosseir (1981) have already suggested that
the individual vortices, which result from Kelvin–Helmholtz instabilities, do not keep
a well-defined phase relation during the ‘collective interaction’. Detailed inspection
of schlieren pictures, such as those shown in figure 2, has revealed the presence of
small and highly concentrated vortices in the region of the upstream cavity edge, but
their position was observed to be randomly distributed. The amalgamation process of
such eddies escapes the present conditional analysis and characterization of a spatial
organization within region I would have necessitated a completely different eduction
scheme.

Consequently, the relevance of the ‘collective interaction’ to describe the vortex
formation process is not confirmed. The only evidence for this hypothesis remains
that (i) the shear layer is strongly forced at a frequency lower than the fundamental
frequency of the shear layer and (ii) the spreading rate is very high.

We have favoured up to now the assumption that the shear layer could be described
almost in isolation, as a free shear layer. As discussed by Colonius (2001) and by
Rowley, Colonius & Basu (2002), an alternative to this ‘shear layer’ regime of the
flow is to consider the flow in a more global sense, accounting for non-parallel effects
and for coupling with the flow inside the cavity. This alternative is supported by the
observations made by Gharib & Roshko (1987) of a ‘wake-mode’ regime which was
found to replace the ‘shear layer’ regime when the ratio between their cavity length
and the initial momentum thickness was large enough. Following Gharib & Roshko
(1987) and Rowley et al. (2002), the ‘wake mode’ is characterized by higher pressure
oscillations, by the formation of a shed vortex whose dimension is close to that of
the cavity size and by free-stream fluid impinging on the cavity base. Such behaviour
is not observed in the present experiment. The transition between the ‘shear layer
mode’ and the ‘wake mode’ depends on the ratio L/θ0 (Gharib & Roshko 1987)
and also on the Mach and Reynolds numbers (Rowley et al. 2002). In the present
flow, L/θ0 ≈ 80, see figure 9, a value which is half that observed for a transition
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between the ‘shear mode’ and the ‘wake mode’ in the incompressible flow of Gharib
& Roshko (1987). It is interesting to note that L/θ0 ≈ 80 exactly corresponds to
the lower limit below which the cavity oscillations were completely suppressed in
their experiment. This confirms that the physics of the flow depends substantially
on the Mach number and on the Reynolds number. The DNS results of Rowley et
al. (2002) on compressible cavity flows show that the transition to the ‘wake mode’
occurs when the cavity aspect ratio increases beyond approximately L/D = 4, and for
large enough values of L/θ0 and D/θ0. This is not relevant for our deep cavity case.
Finally, the ‘wake mode’ suggests the existence of global unstable modes in the cavity,
as in the near-field behind a bluff body. Such a global instability should develop
after the shear layer becomes absolutely unstable, a mechanism which could provide
the feedback mechanism leading to the wake mode (Rowley et al. 2002). This could
occur when a strong enough recirculating flow develops inside the cavity. However,
inspection of our phase-averaged velocity results shows that this does not occur in the
present shear layer, the latter never being absolutely unstable in the sense of Huerre
& Monkewitz (1985). The conclusion is that the present flow is not subjected to a
‘wake mode’ regime.

However, global effects are brought to mind when looking at the frames of figure 2.
One may note in particular the flapping of the initial portion of the shear layer,
in region I, during phases 1 to 5. During these phases, structure S1 is captured by
the cavity and comes closer to structure S2, as if both structures were merging. The
concentration of vorticity that results from this mechanism seems responsible for the
flapping of region I, through a Biot-Savart induction effect. Under this circumstance,
impingement of the large vortical structures on the downstream corner influences the
sensitive region of the shear layer close to the upstream corner. Consequently, the
shear layer cannot be considered as a free shear layer. To what extend this non-local
effect influences the formation of the vortices remains unknown. This could be one
of the components of the ‘collective interaction’.

To end on that point we may repeat, following Gharib & Roshko (1987), that the
development of the initial portion of the shear layer over the cavity may be similar to
that of a free shear layer but modulated by a low-mode cavity wave and exhibiting
an enhanced growth rate and possibly the ‘collective interactions’ described by Ho &
Huang (1982) and Oster & Wygnanski (1982).

4.2. Small-scale production and coherent structures: the elliptic instability?

As discussed above, a distinctive characteristic of the present flow is the concentration
of ‘incoherent’ shear stress in the structure centres. This could be due to measurement
limitations, namely coherent structure jitter or bias due to particle inertia. We show
in Appendix B that jitter contributes to less than 10% of the random perturbations.
Moreover, we also show that jitter, whatever its level, cannot explain the present
distribution of the random shear stress. We also show in Appendix C that particle
bias is negligible.

A possible physical mechanism that could promote the production of small-scale
perturbations in the vortex centres of our flow is the elliptic instability which occurs
in elliptically shaped streamlines of two-dimensional flows, see Pierrehumbert (1986),
Bayly (1988), Moore & Saffman (1975), Waleffe (1990). The role of these instabilities
in the coherent structures of a mixing layer was first studied by Pierrehumbert
& Widnall (1982) who identified the existence of a broadband spectrum of three-
dimensional instabilities, most visible in the central region of the vortices. Elliptic
instabilities result from the stretching of vorticity perturbations by a strain field
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Figure 29. Elliptic instability in a Lamb–Oseen vortex, see equation (9), subjected to a 45◦ strain:
(a) fluctuation of the spanwise vorticity ω′y(x, z, t) of the most amplified mode (arbitrary levels),
(b) shear stress −u′w′(x, z, t) (arbitrary levels).

whose rate is proportional to the ellipticity of the streamline. In an array of vortices,
the strain is induced on a given vortex by the neighbouring vortices. In this case,
the elliptic instability amounts to a cooperative instability mechanism which results
from triadic resonance between two inertial waves and the strain, see Moore &
Saffman (1975). These instabilities have been shown to provoke the merger of two
co-rotating vortices in the absence of perturbations in between the vortices, see
Meunier & Leweke (2000). Consequently, two different linear mechanisms participate
in the onset of three-dimensionality in a mixing layer, namely the development of
elliptic instabilities in the vortex cores and the amplification of longitudinal vorticity
through stretching in the hyperbolic regions – or saddles. Our conjecture is that, in this
strong two-dimensional flow, the core instabilities are stronger than the hyperbolic
instabilities.

One must show however that an elliptic instability leads effectively to concentration
of the shear stress within the vortex core. We will prove this statement by considering
the shear stress of a perturbation field corresponding to the elliptic instability which
develops within a vortex subjected to a small strain. The vortex is modelled by a
Gaussian vorticity distribution:

〈Ωy〉(x, z) = exp{−(x2 + z2)}. (9)

This corresponds to a Lamb–Oseen vortex with a unit radius and circulation Γ = 2π.
A strain field of rate ε, oriented at 45◦, is superposed on this flow. The resulting
deformation rate tensor is

∇u =

(
0 ε+ γ

ε− γ 0

)
, (10)

where γ(x, z) = 〈Ωy〉(x, z)/2 denotes the rotation rate of the vortex. Figure 29 shows
the structure of the most-amplified mode obtained from the linearized Euler equations
in the asymptotic limit of a weak strain rate ε� 1. Figure 29(a) shows the spanwise
vorticity perturbation field ω′y (note the similarity between this figure and figure 9 of
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Pierrehumbert & Widnall 1982). This perturbation grows with the characteristic time
scale τelliptic = C/ε, where C is a constant close to 0.5 (C = 9/16 in the asymptotic
limit ε/γ → 0), and it exhibits a dipolar structure which is characteristic of such an
instability (see Waleffe 1990; Sipp, Coppens & Jacquin 1999).

The corresponding iso-values of −u′w′ are plotted in figure 29(b). They look like
those obtained in the experiment in the sense that the product −u′w′ is positive and
the maximum is located at the vortex centre. This shows that the elliptic instability
could contribute to a distribution of the shear stress localized in the vortex centre, as
in the present experiment.

It must also now be checked, that the instability has time to develop while the
structures are convected over the cavity. Let us consider, first, the time scale of
the instability, τelliptic = C/ε, with C ≈ 0.5. The strain rate ε may be evaluated
by considering the phase-averaged strain rate 〈S〉 plotted in figure 24(c). In the
centre C2 of structure S2 ε

2L2/U2
e ≈ 17. This gives ε ≈ 21 kHz. An alternative is

to determine ε from the rotation rate γ ≈ 〈Ωy〉max/2 and the structure ellipticity,

i.e. E ≈ √(γ + ε)/(γ − ε). Inspection of structure S2 which comes from region I, see
figures 15 and 19, shows that it is elliptical with an aspect ratio (ratio between major
and minor axes) E ≈ 2. This gives ε/γ ≈ 3/5. The rotation rate γ may be evaluated
as γ ≈ 〈Ωy〉max/2 with 〈Ωy〉max L/Ue ≈ 15, as seen in figure 24(a), for structure S2 at
the end of region I. This leads to ε ≈ 3γ/5 ≈ 23 kHz, close to the value found above.
These estimations must be however corrected for the effect of the mesh size, on which
the exact values of 〈Ωy〉 and 〈S〉 depend. The values found above are minima. Tests
have shown that correction by a factor of 2 is a reasonable choice. Applying this
factor to ε leads finally to ε ≈ 40 kHz. Finally, an estimation of the time scale of the
instability is τelliptic ≈ 1/(0.5ε) ≈ 50 µs.

This time scale must be compared now to a convection time scale. The time it takes
for a structure S to reach a downstream position x is

τSc (x) ≡
∫ x

0

dx

US
c (x)

,

where US
c (x) denotes the convection velocity of the structure. This time scale may

be deduced from figure 17. Considering the two characteristic distances xI and xII
indicated on that figure which correspond to the downstream and upstream limits of
regions I and II, respectively, figure 17 shows the times structure S1 takes to cover these
distances starting from their origin are τSc (xI )Ue/L ≈ 0.5 and τSc (xII )Ue/L ≈ 1.1. The
same values are obtained for structure S2. This leads to the following characteristic
time scales: τSc (xI ) ≈ 100 µs and τSc (xII ) ≈ 210 µs.

Consequently, τSc (xI )/τelliptic(xI ) ≈ 2 at x = xI , which means that the instability is
amplified by a factor e2. This indicates that the flow is still in the beginning of the
linear regime in this region. If the flow was initially laminar, the development of very
small initial perturbations would not have been noticed. But the elliptic structures
contain energetic perturbations which originate in the boundary layer. The strain
field associated with the streamline ellipticity then amounts to a distortion of this
turbulence to which it supplies energy and imposes a preferential orientation (see
Cambon & Scott 1999).

To conclude, the above analysis suggests that the elliptic instability is responsible
for the Gaussian-like distributions within the vortex centres of both the kinetic energy
and the shear stress of the ‘incoherent’ fluctuations. This mechanism is thought to be
one component of the onset of turbulence in a mixing layer. The second one, namely
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amplification by stretching of perturbations located in the saddle, is also present, but
it is revealed to be less active than in more standard mixing layers. This is probably
a consequence of the strong two-dimensional organization of the present flow.

5. Conclusions
The unsteady shear layer developing over a deep cavity at high subsonic speed

(M = 0.8) has been studied experimentally with a two-component laser-Doppler
velocimeter. Phase-averaged quantities have been constructed by using an unsteady
pressure signal measured in the cavity. A well-documented database has been obtained
which contains a full description of the conditional statistics inside and around the
cavity. Application of this conditional technique to such a high-speed flow was
revealed to be a challenging task.

The analysis of the results led to the following main conclusions:
(a) The flow in this deep cavity, with an aspect ratio L/D = 0.42, is characterized

by particularly strong self-sustain oscillations. The dominant frequency of these
oscillations corresponds to the first cavity mode, the higher-order modes being closer
to pure harmonics than those observed in shallower cavities.

(b) The possible influence of propagation and multi-reflection of acoustic fronts in
the duct may contribute to selection of this particular regime, which departs from that
described by the standard Rossiter model. Further experimental and/or numerical
tests are necessary before drawing a definite conclusion.

(c) The dynamics of the flow above this cavity amounts to that of a mixing layer
forced by an intense acoustic field at a frequency lower than the natural frequency of
a mixing layer. Three different regions are identified from the mixing layer momentum
thickness. A large growth rate, about three times that of equilibrium mixing layers,
characterizes the region close to the separation point where the structures form. Then,
the growth rate resumes a standard value whereas the flow regime strongly departs
from a self-similar regime. A third region is where the flow structures interact with
the downstream wall.

(d) The mixing layer rolls up into three well-defined vortices, following a scenario
which bears some resemblance to the ‘collective interaction mechanism’ described by
Ho & Nosseir (1981). Conditional analysis shows that this mechanism does not lock
onto the fundamental frequency of the flow.

(e) These two-dimensional vortices possess their own convection speed and trajec-
tory. They do not merge until they impact on the downstream edge of the cavity. The
different behaviours of these structures in the downstream edge region determine the
variation of the pressure at the edge.

(f) Second-order phase-averaged statistics show that more than half the kinetic
energy is contained in the periodic components of the flow. The remainder, i.e. the
‘incoherent’ part, is preferentially located in the vortex centres. This result is in
qualitative agreement with what is found in other free mixing layers.

(g) It is found that production of ‘incoherent’ velocity fluctuations is maximum in
the centres and not in the saddle regions, a result which departs from the consensus
on mixing layers. Elliptic instability is proposed as the mechanism responsible. In
this strongly two-dimensional flow, amplification of the perturbations by the elliptic
instability mechanism is found to be stronger than that due to vortex stretching in
the saddles. This result is an indication that both mechanisms must be accounted
for when considering the onset of three-dimensionality and turbulence in mixing
layers.
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Figure 30. Visualization of one flow period (the time lag between each frame is 100 µs).
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Appendix A. Acoustic wave reflection in the tunnel
A.1. Visualizations

Figure 30 shows a sequence of five schlieren pictures covering one period of the flow.
One can distinguish in frame (a) the radiation of a wave packet from the cavity
hole which looks like the early schlieren images shown by Krishnamurty (1955) in
the case of small cavities in a very large wind tunnel test chamber. But one also
observes upstream propagation of black and white fronts which are due to reflection
on the tunnel walls. The resulting wave pattern amounts to the superposition of two
saw-tooth waves that cross each other in the middle of the tunnel height. Figure 31
shows a series of five frames corresponding to the same phase but at different periods.
This figure proves that the phenomenon is strictly periodic.

A.2. Model

The above observations may be explained by considering the following simplified
model based on the image method.

Let Tn = 1/fn be the period of the nth cavity perturbation mode, of frequency
fn, emitted at point O. The wavelength of the perturbation is λn = Ue/fn. After m
periods, the perturbation has led to a wave train corresponding to the propagation
of the original front and to its successive reflections from the two walls of the tunnel.
Figure 32 corresponds to the case n = 1 and m = 4. If λna = ae/fn denote the acoustic
wavelength, with ae the sound speed in the test section, after 4 periods, the original
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Figure 31. A series of frames corresponding to the same phase, see figure 30(c),
at five successive flow periods.

front has been displaced upstream by a distance 4λna from a source which is located
at x = 4λn. As sketched in the figure, six reflections take place. These reflections,
numbered from r = 1 to 6, may be represented by considering the successive images
of the original source with respect to the walls. The characteristic angle and the
abscissa of points where reflection occurs are labelled θnrm and xnrm, respectively. The
following geometric relations hold:

xnrm = mλn

[
1− cos θnrm

M

]
, sin θnrm = (−1)r+1 rh

mλn/M
. (A 1)

This gives

xnrm = mλn

1− 1

M

√
1−

(
rh

mλn/M

)2

 . (A 2)

Introducing the Strouhal number Stn = L/λn = fnL/Ue, one obtains

xnrm
L

=
m

Stn

1− 1

M

√
1−M2

(
r

m

h

L
Stn

)2

 . (A 3)

Relation (A 3) thus defines the abscissa where the reflected wave labelled r associated
to the mth period of the perturbation impact the tunnel walls. Odd- (respectively
even-) values of r correspond to impacts on the top wall, ynrm = h (respectively, on
the bottom wall, ynrm = 0). The complete wave train amounts to a superposition
of the waves corresponding to all possible values of m, the period number, and of
r, the reflection number. Different mode orders, n, may be accounted for, each one
being characterized by a Strouhal Stn. Note that the total number of possible periods
depends on the length of the tunnel portion, Lc, which separates the convergent
section from the source, see figure 32. The positions of the leading wave fronts, xn0m,
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Figure 32. Wave patterns developing in the duct (image method): propagation and reflections after
four periods T1 of an acoustic front induced by a perturbation originating from point O with a
period equal to T1 = 1/f1 (first cavity mode); the dotted rectangle shows the region visualized in
figures 30 and 31.

must satisfy |xn0m| < Lc, the wave fronts corresponding to higher values of m being
‘swallowed’ by the convergent region. From (A 3), |xn0m| = mL(1−M)/(MStn), so that
the total number of periods is limited by the following relation:

m <
M

1−MStn
Lc

L
. (A 4)

Given m, (A 3) limits also the maximum number of possible reflections to

r(m) 6 m

(
h

L
MStn

)−1

. (A 5)

Indeed, the number of possible reflections is inversely proportional to the duct aspect
ratio h/L (no reflection when h/L→∞) and to the Strouhal value. Combining (A 4)
and (A 5), the maximum number of reflections in the duct is such that

r <
Lc/h

1−M, (A 6)

which introduces a dependence on the duct aspect ratio h/Lc.
In our case, the distance between the cavity upstream edge and the convergent is

equal to 230 mm, see figure 1. The tunnel height is h = 100 mm and the cavity length,
L = 50 mm. Let us consider, for instance, the case where the source is located at the
downstream edge of the cavity, which means that Lc = 280 mm. For St1 ≈ 0.375,
and St2 ≈ 0.75, which correspond to the strongest frequencies, (A 4) predicts 8 and
16 superimposed wave trains in the duct, respectively. From (A 5), we find that 13
reflections occur in both cases. The total number of reflected waves in the duct is
limited to 14, whatever the Strouhal number, see (A 6).

We search now the conditions for focusing of these waves at the source origin.
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Figure 33. Focusing of reflected waves at the perturbation source at M = 0.8. The source is placed
at the downstream edge of the cavity. (a) Influence of the tunnel height h/L: solutions of (A 7)
(the horizontal solid lines are the Strouhal values deduced from the Rossiter model with (α = 0.25,
Uc/Ue = 0.57); the dotted lines are the values found in the present experiment, see symbols in
figure 6). (b) Wave train obtained for (h/L, St1) = (2, 0.375), corresponding to the circle in (a). Full
lines: leading fronts and reflections from the bottom; dotted lines: waves reflected from the top.
The source origin, point O, is indicated.

We suppose, again, that the source is located at the downstream cavity edge. Putting
xnrm = 0 in (A 3) selects Strouhal numbers such that

Stn =

√
1−M2

M
r

m

h

L

, (A 7)

where r/m is a rational number. Figure 33(a) shows the variation of Stn with h/L
for the main rational values r/m. For h/L = 2, the figure clearly indicates a possible
resonance with the first cavity mode of focused waves such that r/m = 1. In this case,
modes 2 and 3 are also in correspondence with the focused waves r/m = 1/2 and
r/m = 1/3, respectively. Consequently, the system also promotes the harmonics of the
fundamental, e.g. the first one St2 = 2St1, as found in the present experiment. This is
an indication that the above described mechanism could participate to the selection
of the observed resonant frequencies, which are close to harmonics and slightly depart
from the Rossiter modes.
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Note that integer values of r/m, e.g. r/m = 1, are most effective because they enable
focusing of a maximum number of waves: the reflection from the bottom, labelled
r = 2, of the wave emitted after m = 2 periods coincides with reflection r = 4 of
the wave m = 4 and so on, up to the last possible period fixed by (A 4). Waves
corresponding to odd-values of r also collapse on the top wall at the source abscissa.
For St1 ≈ 0.375 we saw that m = 8 periods are present in the duct. This means that
four reflections coincide at the source for r/m = 1. This is illustrated in figure 33(b)
which shows the result of a computation of the image method for St1 = 0.375,
h/L = 2 and Lc/L = 5.6. The waves are seen to collapse at the source within a quite
well-defined wave pattern which looks, qualitatively, like those observed in figures 30
and 31. This wave pattern propagates upstream and deforms slightly, but the same is
retrieved after each flow period.

Now, a detailed inspection of figure 33(b) shows that the wave pattern is narrower
than those observed in figures 30 and 31. A better fit is obtained when the source is
placed slightly upstream of the cavity, but there is no evident reason for a localization
of the source here. This is an indication that the model is too simple to describe
completely the mechanism. However, the model indicates that confinement effects are
possibly contributing, somehow, to the global dynamics of the flow. This may occur
when the reflected waves are periodically sweeping the upstream edge of the cavity
where the shear layer separates. Other types of interaction, above and around the
cavity, may also contribute. Note for instance that the waves which impact on the
shear layer during propagation of the pattern are refracted within the cavity (this
refraction process is clearly apparent in figure 12a, b). This introduces an acoustic
front inside the cavity which could interfere with the cavity resonance.

Appendix B. Jitter
The purpose of this Appendix is to evaluate if jitter of the coherent structures could

explain the unusual distribution of the shear stress. We show first that jitter is weak
(away from the impingement region). We show then that, whatever its amplitude,
jitter cannot explain the observed distribution of shear stress.

As we saw in § 3.7, the periodic motion is subjected to variations from period
to period when approaching the downstream edge in region III. These deviations
from periodicity are called jitter, see Hussain & Zaman (1980). Jitter may result from
random shifts of the structure position (spatial jitter or meandering) and/or from
variations of the field amplitude from period to period (temporal jitter). These effects
cannot be avoided when the working signal and the conditioning signal are issued
from different points in the flow, as in the present case. As discussed by Hussain (1986)
and by Lyn et al. (1995), these variations of the coherent motion may contribute to
the random part of the fluctuations. Interpretation of second-order statistics may
then be obscured by this effect.

Thanks to the periodic nature of the flow and to the proximity of the two measure-
ment points, we expect this effect to be weak, except in the downstream edge region.
Figure 34 shows the phase-averaged random shear stress −〈u′w′〉. The corresponding
iso-levels of vorticity 〈Ωy〉 are found in figure 27(b). Important phase shifts between
〈Ωy〉 and −〈u′w′〉 become evident in the vicinity of the wall. Note that, even if a slight
smearing of −〈u′w′〉 is found in the structures at the entrance of region III, a strong
correlation with 〈Ωy〉 still remains there. This indicates that the relation between
vorticity and random shear stress may be profoundly changed in regions where jitter
occurs.
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Figure 34. Contour plots of the phase-averaged random shear stress −〈u′w′〉/U2
e for phase 2, 6,

11 and 16. The corresponding contour plots of the phase-averaged vorticity 〈Ωy〉 are shown in
figure 27(b).

B.1. Jitter evaluation

Jitter may be evaluated by considering the spectra of the total and ‘incoherent’ velocity
fluctuations. An example is given in figure 35 where the spectral densities and the
co-spectra of the u- and w-velocity components deduced from LDV measurements
at the centre of the shear layer, i.e. x/L = 0.5, y = z = 0, are shown. We used
equal-time-spaced data obtained by means of a linear interpolation of the randomly
spaced LDV samples. The integral under the spectra of figures 35(a) and 35(b) (dotted

lines) corresponds to the Reynolds-averaged normal stresses u′20 and w′20 . Figure 35(c)
shows the absolute value of the real part of the co-spectrum, whose integral is equal to
−u′0w′0. The integrals under the spectra and co-spectra of the random fluctuations (full

lines) correspond to 〈u′2〉, 〈w′2〉 and 〈u′w′〉. Note that a linear interpolation of the data,
such as that used here, leads to a progressive attenuation of the signal energy beyond
frequencies equal to 1/5 to 1/6 the LDV mean sampling rate, see Ramon & Millan
(2000). In the centre of the mixing layer, the mean sampling rate is nearly 25 kHz.
Accordingly, an attenuation must be felt beyond f ≈ 4 kHz, that is beyond St ≈ 0.75.
This does not change the integral values which are found to be close to those obtained
from temporal averages of the LDV data signals. Moreover, this interpolation bias
affects the full and the filtered data of figure 35 equivalently. Consequently, the latter
can be compared without ambiguity on a larger frequency range.

The conditional analysis being phase locked on the first cavity mode, figure 35
shows that it leads to a strong reduction of the first energy peak. After integration,

this peak was found to contain nearly two thirds of u′20 , w′20 and u′0w′0, in accordance
with the results of § 3.6.
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Figure 35. Spectral densities of the velocity field in the centre of the shear layer (x/L = 0.5,
y = z = 0): (a) u-component, (b) w-component, (c) real part of the co-spectrum (absolute value).
Dotted lines: full data, solid lines: ‘incoherent’ fluctuations.

However, figure 35 shows that part of the ‘incoherent’ energy comes from
‘leakage’ from the main frequency and its harmonics. But the remaining peaks are
found to contribute less than 10% of the velocity energy 〈u′2〉 or 〈w′2〉. The same

is true for the shear stress −〈u′w′〉. This means that, on average, less than 10% of
−〈u′w′〉 comes from ‘leakage’ from the main frequency and its harmonics into the
incoherent fluctuations. This gives an evaluation of how much jitter contributes to
−〈u′w′〉.

B.2. Simplified analysis of the contribution of jitter to the shear stress

Here, we use another argument to show that, whatever its level, jitter cannot be
responsible for the present distribution of −〈u′w′〉. This argument is based on the
observation that meandering of a vortex around its phase-averaged position cannot
result in a Gaussian random shear stress distribution centred on the vortex axis,
as is found here. This may be illustrated by considering, as in § 4.2, a Lamb–Oseen
vortex with a vorticity distribution given by relation (9). Suppose now that this
vortex structure is subjected to a random motion around its centre. Figure 36 shows
the distribution of −〈u′w′〉 obtained when the vortex is subjected to an isotropic
random motion around its centre. This motion results in a perfectly quadripolar
distribution. Non isotropic motions would also lead to a two-signed distribution of
−〈u′w′〉 with a minimum in the vortex centre. This contradicts our experimental
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Figure 36. Meandering of a Lamb–Oseen vortex: iso-values of −〈u′w′〉(x, z) resulting from
an isotropic motion of the vortex (arbitrary levels). The circles show the background vortex
ωy(x, z) = exp{−(x2 + z2)}.
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Figure 37. Contour plots of the phase-averaged Stokes number 〈τ〉: (a) phase 5, (b) phase 10,
(c) phase 15, (d ) phase 20 (levels from 0 to 0.07 in increments of 0.005).

observations. An interesting comparison may be done with the flow corresponding
to the trailing vortices of high-aspect-ratio wings. In these flows, one also observes
that the perturbation kinetic energy undergoes a sharp and very local increase in
the vortex centre, whereas −u′0w′0 exhibits a quadripolar distribution such as that
shown in figure 36; measurements have confirmed that fluctuations in such flows
are entirely dominated by strong meandering of the vortices (Devenport et al. 1996;
Jacquin et al. 2001).

The conclusion is that jitter is not responsible for the distribution of −〈u′w′〉.



The mixing layer over a deep cavity 143

Appendix C. Particle bias
The purpose of this Appendix is to evaluate particle bias that could result from

centrifugal motion by the coherent vortices of the mixing layer. A criterion for
evaluating bias due to particle inertia in a mixing layer was provided by Samimy &
Lele (1991) based on a two-dimensional DNS of the particle flow tracking accuracy
and particle dispersion in a two-dimensional, mildly compressible, free shear layer.
Considering particles with density, ρp and mean diameter dp, particle inertia effects
are evaluated through a Stokes number defined as τ = τp/τf where τp = ρpd

2
p/18µ

with µ the fluid viscosity and where τf is a flow time scale. In Samimy & Lele (1991),
τf was evaluated as τf = 10δω0

/(U1 −U2) with δω0
the initial vorticity thickness and

where 1 and 2 refer to high- and low-speed streams, respectively. They found that
the velocity field provided by LDV measurements can be considered accurate when
τ 6 0.2. In our case, ρp ≈ 103 kg, dp ≈ 0.6 µm, δω0

≈ 1 mm, U1 = Ue ≈ 260 m s−1 and
U2 = 0. This leads to τp ≈ 1 µs, τf ≈ 40 µs, τ = 0.025. The latter value is much smaller
than the limit τ = 0.2 proposed by Samimy & Lele (1991).

However, due to the intermittent nature of the vorticity field in the present flow it
might be preferable to consider smaller values of τf than that given above which may
better account for centrifugal effects inside the coherent vortices. Conditional analysis
provides an estimation for this time scale, namely 〈τf〉 ≈ 1/〈Ωy〉max. According to
figure 12, in the flow region covered by the measurements, an evaluation of 〈Ωy〉max
is 〈Ωy〉maxL/Ue ≈ 20, that is 1/〈Ωy〉max ≈ 10 µs. This gives 〈τ〉 ≈ 0.1. Figure 37 shows
sample distributions of 〈τ〉 for four different phases of the flow. As discussed in § 4.2,
a final correction should be made to account for the mesh size effect, which leads to
underestimation of 〈Ωy〉max by nearly a factor 2. This finally leads to 〈τ〉 ≈ 0.2, for
which measurements may be considered as valid following Samimy & Lele (1991).

The conclusion is that particle inertia effects are negligible.
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